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Abstract

Statistical and causal inference have become universal currencies of explana-
tion across the sciences, particularly in domains where underlying mechanisms
remain opaque. Their apparent rigor—spanning psychology, economics and
biomedicine—rests on the assumption that patterns within data can reveal the
processes that generate them. Yet persistent mismatches between empirical pre-
dictions and real-world behaviour expose a deeper limitation: mechanisms cannot
be inferred from data distributions alone. To address this limitation, we revisit
the foundations of both paradigms, showing how statistical inference reduces ex-
planation to geometric alignment, while causal inference, evolved from Bayes’
theorem and graphical models, extends this misstep by conflating probabilistic
structure with causal truth. Both expose the same epistemic gap: data encode a
lower-dimensional projection of structure, not the mechanism that generates it. We
argue that understanding the world follows two routes: one is data-driven, expand-
ing models toward richer function classes to achieve high-precision prediction, as
exemplified by modern deep learning; the other is mechanism-driven, proposing
and testing structural hypotheses as in the physical sciences. A robust framework
requires both: data-driven models for high-precision prediction, and mechanistic
models for reconstructing how the world produces the data we observe.

1 Introduction

Across many scientific domains, statistical and causal inference have become default tools for
turning complex observations into interpretable results. Psychology Collaboration [2015], economics
Camerer et al. [2016] and biomedicine Ioannidis [2005], in particular, depend on these methods
whenever direct access to underlying mechanisms is out of reach. Over time, this dependence has
given rise to an illusion of methodological certainty: as long as the analysis is significant, the claim
appears sound. Yet the growing number of failed replications—from behavioural studies to clinical
trials—suggests that what these methods capture is often a surface regularity rather than a genuine
principle of how the world works.

Most researchers acknowledge that correlation does not imply causation, yet the same procedures
remain deeply entrenched. The reason is pragmatic rather than epistemic. When mechanisms
cannot be measured and sample sizes are limited, statistics offers a way to project uncertainty into
mathematical form. Patterns that would otherwise look noisy can be fitted into curves, slopes or
conditional dependencies, each assigned a numeric level of confidence. In this sense, statistics does
not uncover meaning—it produces geometric regularity in places where the underlying structure
remains unknown.

From its very beginning, statistical reasoning has relied on symbols that conceal its geometric nature.
Correlation is the cosine of an angle, variance the length of a vector, regression the alignment of a



Figure 1: Data as lower-dimensional projections of structure. A single underlying world model
gives rise to multiple observational projections, each encoding a different low-dimensional repre-
sentation of the same structure. Once projected and compressed, the original properties become
irrecoverable without prior knowledge of the generating process—illustrating why statistical and
causal inference cannot recover mechanisms from data distributions alone.

plane Rencher and Schaalje [2008]. These are operations on geometry, not mechanisms. Modern
causal inference inherits the same logic, with an added layer of semantic drift Pearl [2009]. Bayes’
theorem—originally a measure-an identity built from the formal definition of conditioning—was later
reinterpreted as a calculus of belief through priors and posteriors, and eventually recast in graphical
form as if conditional dependence entailed causal direction. Entire causal frameworks were built
on this conflation. What unites both traditions is the same epistemic limit: data capture only the
projection of a structure, never the process that generates it.

Understanding the world, therefore, follows two complementary yet incomplete paths.
One—mirroring modern machine learning—accumulates ever more parameters and basis func-
tions to perfect prediction, yet remains blind to the mechanisms that generate the data Hornik et al.
[1989], LeCun et al. [2015]. The other follows the logic of the physical sciences: starting from
structured prior knowledge, it proposes candidate mechanisms and tests whether they can produce
the observed phenomena. But this approach falters whenever the underlying structure is too complex
or only partially observable Hempel and Oppenheim [1948]. A genuine theory of inference must
unify these two modes: models that predict reliably from data, and mechanisms that explain how the
phenomena are generated.

Our contribution. This work re-examines the foundations of statistical and causal inference.
We reveal how their core constructs—correlation, significance, regression, and conditional depen-
dence—originated as geometric or probabilistic operations but were later misinterpreted as expla-
nations of mechanism. Building on this diagnosis, we outline two complementary yet incomplete
paradigms for understanding the world: one that, like deep learning, expands toward infinite bases
for prediction while remaining mechanistically blind, and another that generates systems from prior
semantic bases but falters when those priors fail to capture complexity. Finally, we explain why
such methods persist across psychology, economics, and biomedicine: they offer numerical certainty
where mechanistic understanding is absent. Together, these arguments recast inference as a problem
of meaning rather than measurement.

2 The Root of the Error: Projection, Sampling, and Estimation

Modern inference traditions emerged from two pressures:
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• Generative mechanisms were not specified. Many fields operated without explicit ac-
counts of how observations are produced. The underlying processes remained undefined,
conceptually diffuse, or absent from the modeling framework.

• Conclusions were drawn from minimal observations. Researchers routinely attempted to
make claims about complex systems using small, sparse or convenience datasets. Limited
data were treated as sufficient to characterize the structure of the world.

These pressures encouraged a substitution: data were treated not merely as evidence about the
world, but as stand-ins for the world’s generative structure. Samples were assumed to come from an
underlying distribution; the distribution was assumed to reflect stable properties of the world; and
stability was taken to imply mechanism.

Once this substitution was accepted, inference inverted the logic of scientific explanation. Rather than
defining how the world produces observations, researchers attempted to extract generative structure
from the observations themselves. The projection, sampling, estimation and semantic fallacies that
follow arise directly from this initial move: asking patterns in the observation space to substitute for
mechanisms that were never specified.

2.1 The Projection Fallacy: When Observations Are Mistaken for the World

For more than a century, statistical inference has treated data as if they were direct observations of
the world. In practice, data are not observations but projections—compressed, transformed, and lossy
encodings of far richer semantic states. A distribution therefore captures only the geometry of these
encodings, not the mechanisms that generate them.

Formally, statistical analysis operates on a reduced observation space:

x = f(s), x ∈ Rn, s ∈ S,

where the mapping f collapses high-dimensional semantic structure into a finite set of measurable
quantities. The original state s contains the generative variables—interactions, processes, transfor-
mations—that explain why events occur. After projection, this semantic layer is irretrievably lost.
Neither P (x) nor P (x, y) encodes the causal grammar that produced them.

Once meaning has been removed, the resulting geometry can be endlessly rearranged. Comparing
distributions becomes an exercise in alignment without understanding: curves can be made to match,
variables can be regressed, and patterns can be interpreted as structure, even when no mechanism
survives the projection that created them.

Data therefore cannot be read as windows onto the world. They are shadows cast by a generative
process, and the shape of a shadow cannot reveal the object that made it. Mechanism does not reside
in the distribution; it must be specified in the semantic space where generation occurs.

2.2 The Sampling Fallacy: When Distribution Is Mistaken for World

Statistical and machine-learning theory typically assumes that observed data are “samples” drawn
from an underlying probability distribution. This assumption contains two distinct errors.

The first error is semantic. The generative world does not operate as a probability distribution; it
operates as a mechanism. States in the semantic space S evolve according to physical, biological,
cognitive, or social processes—not according to draws from a mathematical object. There is no
world-defined distribution from which the true states are sampled.

The second error is geometric. Even if such a distribution existed, the analyst never observes it. What
is recorded is a compressed projection:

x = f(s), x ∈ Rn, s ∈ S,

where the map f is many-to-one, lossy, and often opaque. The projected data x do not themselves
form a mathematical distribution in any principled sense; they merely trace the geometry induced by
f . Nothing guarantees that the resulting dataset conforms to any parametric or nonparametric family
assumed by statistical theory—not Gaussian, not exponential family, not i.i.d., not stationary, and not
smooth.
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Thus the sampling assumption commits a double fallacy. What is treated as sampling is, in fact, the
output of a mechanism; and what is treated as a distribution in Rn is, in fact, the image of a projection
that destroys the very semantics needed to justify distributional reasoning.

Yet much of statistical and machine-learning theory proceeds as if both assumptions were correct.
Learning bounds rely on i.i.d. sampling from a fixed distribution; Bayesian inference relies on a
likelihood that corresponds to the true generative model; asymptotic theory presumes that larger
“samples” converge to an underlying truth. None of these guarantees survive the recognition that data
are projections rather than samples.

A projected dataset cannot reveal the distribution of the world because neither the world nor the
projection produces such a distribution. Once semantics have been stripped away, no mathematical
refinement—no resampling, no bootstrapping, no asymptotics, no density estimation—can recover
what was never present.

The real inferential problem is therefore not to estimate a “true” distribution behind the data. It is
the inverse problem: given a projected dataset and a set of semantic priors, how can one reconstruct
the generative structure that produced it? This is a problem of mechanism recovery, not density
estimation. And any such recovery requires priors about the projection itself—about how semantic
structure was compressed, erased, or entangled on its way into Rn. Without priors on the projec-
tion, the inverse problem is formally underdetermined: no amount of mathematics can reconstruct
generative structure from geometry alone.

2.3 The Estimation Fallacy: When Precision Is Mistaken for Understanding

Statistical and machine-learning methods often seek ever more precise estimates—lower variance,
tighter confidence intervals, smaller error bars. But precision in the projected space does not imply
insight into the generative world. One can estimate the wrong object with arbitrary accuracy.

Formally, estimation procedures optimize with respect to the geometry of the projected data x = f(s),
not the mechanism that produced s. Even perfect estimation of P (x), its parameters, or its latent
factors does not recover the erased semantic variables or the transformations that govern them. An
estimator can converge, asymptotically or exactly, to a value that has no interpretation in the semantic
domain.

This is the estimation fallacy: the belief that reduced uncertainty in the data space reflects reduced
uncertainty about the world. In reality, tighter estimates merely refine the geometry induced by the
projection f ; they do not reconstruct the mechanism g that generated the states. Precision in the space
of shadows does not illuminate the object that cast them.

2.4 The Semantic Fallacy: When Meaning Disappears Under Projection

The deepest error in modern inference is not geometric but semantic. Once the generative world is
compressed into an observation space Rn, the semantic content of the original states—their roles,
relations, and causal functions—no longer exists within the data. Semantics are erased by projection,
yet are reintroduced by interpretation.

The projected variables x do not correspond to the entities that produced them; they correspond
only to the coordinates assigned after compression. Distances, similarities, and conditional relations
among the x do not preserve the meaning that governed the transformations of the underlying states
s ∈ S . But statistical methods routinely treat these geometric relations as if they reflected the logic of
the generative process.

This is the semantic fallacy: the belief that patterns in the projected space retain the meanings that
existed before projection. Correlations are interpreted as relationships, regressions as influences,
likelihoods as mechanisms, and posterior distributions as knowledge—even though none of these
quantities contain the semantic properties they are taken to represent.

Formally, a projection f : S → Rn is not a semantic map but an information-destroying trans-
formation. Different semantic states collapse to the same observation; distinct processes produce
indistinguishable geometries; and meaningful distinctions in S become conflated in Rn. No statistical
procedure operating solely in the projected space can recover the roles, intentions, or causal capacities
that structured the original system.
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Yet much of scientific interpretation assumes the opposite. Machine-learning representations are
treated as concepts; statistical contrasts as explanations; graphical factorizations as mechanisms.
Semantics are not contained in the data—they are supplied by the analyst and mistaken for properties
of the distribution.

3 The Illusion of Inference: When Statistics Confuse Geometry with
Mechanism

The confusion between geometry and meaning did not arise by accident—it was institutionalized.
Across the twentieth century, each reform in statistical reasoning sought to formalize uncertainty and
discipline scientific judgment. Fisher quantified experimental claims Fisher [1970], Neyman codified
decision rules Neyman and Pearson [1933], and Pearl expressed causality in graphical syntax Pearl
[2009]. Each advance increased mathematical rigor but displaced questions of how with questions of
how much. Inference became a substitute for understanding.

As experimental inquiry gave way to modeling, explanation was redefined as prediction, and mecha-
nism as estimation. The tools grew sharper, but their targets became thinner. By the time data-driven
inference matured, the very notion of “knowing why” had been replaced by “fitting what.”

Today, the legacy of this history persists: significance, likelihood, and model fit are often mistaken
for understanding. But inference, however precise, only maps the geometry of what has been
observed—it cannot reveal the process that made it so. To trace how this drift became normalized,
we now revisit three canonical paradigms of statistical inference—correlation, significance, and
regression—each a historical attempt to extract mechanism from geometry.

3.1 The Geometry of Correlation: What Pearson Actually Measured

Long before computers and data science, researchers sought a numerical way to capture how things
might be related. In the late nineteenth century, scientists in biology and social science were
collecting measurements—height, intelligence, income, behavior—without access to the mechanisms
that produced them. When causation was unobservable, they turned to co-variation: if two quantities
rose and fell together, perhaps they were connected.

KARL PEARSON formalized this intuition by defining a single measure of linear association between
two observed variables Pearson [1896]. The resulting coefficient, later known as the Pearson
correlation, quantifies how strongly two datasets align in shape rather than in cause:

rxy =
cov(x, y)

σxσy
=

(x− x̄) · (y − ȳ)

∥x− x̄∥ ∥y − ȳ∥
= cos(θxy).

Formally, this is a normalized inner product between two centered data vectors. Geometrically, rxy
equals the cosine of the angle θ between (x− x̄) and (y − ȳ) in a Euclidean data space. Variance
represents vector length, covariance their dot product, and correlation the cosine of their relative
orientation.

Table 1: Geometric interpretation of the Pearson correlation.

Statistical expression Geometric meaning

Variance (σ2
x) 1

n

∑
i(xi − x̄)2 Squared vector length of x

Covariance (cov(x, y)) 1
n

∑
i(xi − x̄)(yi − ȳ) Inner product between x and y

Correlation (rxy) cov(x,y)
σxσy

Cosine of angle between x and y

This geometric framing is elegant yet deceptively simple. Real-world data rarely inhabit a flat
Euclidean plane: they lie on high-dimensional, curved manifolds. Projecting such complexity
into a single pairwise angle inevitably discards structural information and exaggerates apparent
relationships.

Such large angular separations expose how little alignment typical empirical correlations imply. In
psychology, mean reported correlations near r = 0.3 correspond to vectors separated by roughly
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Table 2: Approximate angular separation for common correlation values.

rxy Cosine interpretation Angle θxy (°)
1.0 Perfect alignment 0
0.9 Very strong 26
0.8 Strong 37
0.7 Moderate–strong 46
0.5 Moderate 60
0.3 Weak 73
0.2 Very weak 79
0.0 None 90

73◦—barely pointing in the same quadrant. Economics fares no better: correlations that appear
robust in-sample often collapse out-of-sample, underscoring that correlation captures orientation, not
mechanism.

To appreciate this semantic limitation, consider its modern analogue—cosine similarity in embedding
spaces Mikolov et al. [2013]:

sim(u, v) =
u · v

∥u∥ ∥v∥
.

Mathematically identical, yet conceptually distinct. Cosine similarity compares two representations
within a shared latent manifold, where dimensions carry learned meaning. Pearson correlation, by
contrast, relates two distinct variables extracted through independent measurement pipelines; their
coordinate systems are not semantically aligned. It is, in effect, the angle between two unrelated
shadows—formally defined, yet devoid of shared reference.

Even within embedding spaces, cosine similarity can mislead: it often retrieves items sharing
superficial geometric or frequency patterns rather than genuine semantic relations. If similarity fails
even in co-trained spaces, correlation between semantically isolated variables is exponentially more
fragile. It reproduces the geometry of relation, but not the meaning behind it.

Correlation preserves shape, not meaning—and in doing so, it mistakes orientation
for explanation.

3.2 From Significance to Ritual: The p-Value Illusion

Before mechanistic models were available, researchers needed a numerical rule to decide whether an
observed pattern looked unusual under a simple baseline. Fisher’s p-value supplied such a rule—a
geometric index of deviation, never a statement about underlying process Fisher [1970].

Formally, a p-value is a tail probability in the space of a summary statistic:
p = P (T (X) ≥ tobs | H0).

This quantity lives entirely inside a one-dimensional projection. It reflects the geometry induced by
the null model, not the structure of the generative system that produced the data.

The central illusion is straightforward: a low-density region in this one-dimensional geometry is
treated as evidence about a high-dimensional world. The tail area is a property of a mathemati-
cal construction, yet it is routinely interpreted as a property of the mechanism that produced the
observations.

A p-value does not test a mechanism; it tests the position of a statistic in a reference
curve.

Thresholding converts this geometric position into a semantic claim—“real,” “significant,” “true.”
These categories derive from the assumptions of the null distribution, not from the generative structure
of the world.

The fragility of significance follows directly from this mismatch. A one-dimensional projection
cannot reveal the structure of a generative system, regardless of the threshold applied. Signals in the
projected space cannot recover the mechanisms erased by the projection itself.
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Significance is a one-dimensional shadow interpreted as a generative explanation.

3.3 Regression as Projection: The Mirage of Explanation

Regression began as a purely geometric tool. In Galton’s original formulation, the fitted line was
simply the orthogonal projection of one centered data vector onto another—a descriptive summary of
co-variation, not a statement about generative influence Galton [1886], Rencher and Schaalje [2008].

Over the twentieth century, this geometric construct was gradually recast as a mechanistic one. The
equation

y = βx+ ε

was no longer read as a projection in data space but as a causal pathway in the world. The coefficient
β, which is mathematically defined as

β =
cov(x, y)

var(x)
=

(x− x̄) · (y − ȳ)

∥x− x̄∥2
,

became interpreted as the “effect” of x on y. Yet this quantity is merely the optimal scalar in a
least-squares projection: it measures the angle and relative lengths of two vectors after centering.
Nothing in its definition refers to mechanisms, transformations, or influence.

Formally, the fitted value ŷ = βx is the orthogonal projection of y onto the span of x. Geometrically,
this means that regression finds the point in a one-dimensional subspace that minimizes Euclidean
reconstruction error. But reconstruction in data space is not explanation in semantic space. A
projection reveals how well one shadow aligns with another—not how the underlying objects interact.

The distinction is not cosmetic but fundamental. Regression coefficients are invariant under rotations,
rescalings, and reparameterizations of the projected space Rn. Mechanistic relations are not. Two
distinct generative processes can produce identical regression estimates, and identical generative
processes can yield wildly different coefficients depending on the projection f that maps semantic
states s ∈ S into observed values x = f(s). Thus the geometry of fit contains neither the direction
nor the logic of the underlying causal transformation.

A regression coefficient is the angle between two shadows—not the force that moves
the objects casting them.

This slippage from geometry to meaning underlies the widespread misuse of regression as explanation.
In psychology, regression coefficients are treated as cognitive parameters; in economics, as behavioral
laws. In each case, models fit historical data with impressive precision yet fail to generalize, because
precision in the projected space does not translate into truth about the generative world.

Regression offers precision without understanding: geometry mistaken for mecha-
nism, alignment mistaken for influence.

4 The Illusion of Causality: When Models Confuse Syntax with Semantics

The geometric barrier outlined above would seem to make one conclusion inevitable: if data distribu-
tions cannot contain generative structure, then no algebra defined on those distributions can produce
it. Yet much of modern statistics, Bayesian reasoning, and causal inference was built on precisely the
opposite hope.

Faced with the impossibility of recovering mechanism from projection, researchers redirected the
problem into the symbolic domain—attempting to read semantics out of syntax, treating probabilistic
expressions as if they could encode information, relevance, belief, or causal influence. This was
not a later misapplication but a foundational assumption: that manipulating expressions within a
probability space could reveal the processes that gave rise to it.

Conditioning was formalized as a ratio of measures, yet was implicitly treated as if it expressed
knowledge or relevance Kolmogorov [2018]. Bayes’ identity was an algebraic equality, yet was
reframed as a rule of learning or belief revision de Laplace [1820]. Graphical factorizations were
notational devices for decomposing joint distributions, yet were interpreted as diagrams of mechanism.
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And modern causal inference built an entire philosophy on the premise that statistical regularities can
recover generative structure—an assumption that is false in principle Pearl [2009].

These were not neutral mathematical tools later assigned the wrong meaning. Their meanings were
imported from the start through linguistic metaphors, intuitive readings of notation, and a natural
tendency to treat grammar as semantics. The result is a family of formalisms that appear to explain
how systems work, even though their mathematics never contained any account of mechanism.

To clarify this structural error, we examine conditioning, Bayes’ theorem, graphical models, and
causal inference in their original formulation. In each case, the problem is not misuse but ontology:
syntax was taken for semantics, and algebra was taken for transformation. This confusion forms the
foundation of the modern causal illusion.

4.1 Conditioning: A Linguistic Metaphor Mistaken for a Mathematical Operation

Conditioning is often treated as a semantically meaningful transformation, as if the notation “A |
B” described a shift of context, information, or assumption. Formally, however, conditioning in
probability theory is defined only as a ratio of measures Kolmogorov [2018]:

P (A | B) =
P (A ∩B)

P (B)
.

This expression performs a purely algebraic task: it normalizes the measure of the intersection A∩B
by the total measure of B, producing a dimensionless scalar. The operator “|” therefore encodes
no semantic content; it introduces neither information restriction nor belief refinement. It merely
rescales a subset of measure space.

A deeper problem is rarely acknowledged: probability multiplication can acquire set-theoretic
meaning, but probability division cannot. When two events are independent, the probability of their
joint occurrence factorizes:

P (A ∩B) = P (A)P (B) (iff independence).

In this special case, scalar multiplication corresponds to a legitimate event-level operation: the
intersection of A and B. Outside such structural assumptions, however, the product P (A)P (B) is
merely the product of two scalars, with no guaranteed interpretation in the underlying sample space.

In contrast, probability division has no event-level interpretation. The ratio

P (A ∩B)

P (B)

does not denote an event, a transformation of the sample space, or any operation in measure theory; it
merely rescales one scalar by another. Nothing in the mathematics of division guarantees closure
within the unit interval—indeed, division can yield values exceeding 1, a clear indication that no
underlying event could correspond to the operation. Thus conditioning is not a lawful transformation
on events but a notational convention that disguises a purely algebraic normalization.

The confusion persists because the notation “A | B” mimics the linguistic phrase “given B,”
encouraging readers to treat an algebraic ratio as if it encoded information restriction, relevance, or
causal constraint. None of these appear in the definition. Conditioning performs a geometric rescaling
in measure space; the semantics are imported by the analyst, not supplied by the mathematics.

4.2 Bayes’ Theorem: An Algebraic Identity Misread as Epistemology

Bayes’ theorem is often introduced as the mathematical foundation of inference, learning, and belief
updating. Yet the theorem itself possesses none of these properties. It is nothing more than a symbolic
rearrangement of the definition of conditioning:

P (A | B) =
P (A ∩B)

P (B)
=

P (B | A)P (A)

P (B)
.

This identity introduces no new information, mechanism, or process. It merely restates a relationship
among numerical quantities already defined.
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Conditioning, however, is not a lawful operation on events. It is only a ratio of scalars with no
set-theoretic or mechanistic meaning. Bayes’ theorem, being an algebraic rearrangement of this ratio,
cannot acquire epistemic content from an operation that has none.

The first semantic reinterpretation came from statistics. Early Bayesian analyses renamed the three
numerical terms in the algebraic identity underlying Bayes’ theorem as “prior,” “likelihood,” and
“posterior.” A static equality was presented as an updating procedure, even though nothing in the
identity specifies change, learning, or cognition. This interpretation did not arise from the theorem
itself. It was created by assigning epistemic roles to the three positions of an algebraic relationship that
is, in essence, equivalent to the structure a× b = c. The meaning resides in the naming convention,
not in the mathematics.

Later, cognitive science adopted this statistical metaphor and elevated it into a model of reasoning.
Hypotheses and evidence replaced sets and events; beliefs and updates replaced ratios and products.
But again, none of these concepts appear in the theorem. They are cognitive narratives layered onto
an algebraic identity that is indifferent to interpretation.

Bayes’ theorem never contained epistemic meaning. It appeared to gain meaning only because
successive communities—first statistics, then cognitive science—misread algebraic syntax as a model
of reasoning.

4.3 From Conditional Distribution to Directed Graph: The Syntax Illusion

Once conditioning is recognized as an algebraic ratio rather than a lawful operation on events, the
status of graphical models becomes clearer. Bayesian networks were built on this ratio by treating
conditional terms as meaningful structural components. Formally, they provide a compact syntactic
factorization of a joint distribution Pearl [2009]:

P (X1, X2, . . . , Xn) =
∏
i

P (Xi | Parents(Xi)).

This factorization expresses nothing about mechanism, generation, or direction. It is simply one of
many ways to rewrite a joint probability as products of scalar ratios.

The illusion arises when this syntactic decomposition is mistaken for structure. A directed
edge—introduced as a bookkeeping device—was reinterpreted as a causal arrow, even though
conditional terms contain no directional or generative semantics. The expressions

P (X | Y ) =
P (X ∩ Y )

P (Y )
, P (Y | X) =

P (X ∩ Y )

P (X)
,

are algebraic normalizations, not statements about influence. Nothing in the distribution distinguishes
X → Y from Y → X , and no factorization order corresponds to a mechanism.

Graphical models therefore encode only syntactic relationships among algebraic ratios. They describe
permissible rearrangements of a joint distribution, not the processes that produce it. Interpreting their
arrows as mechanisms extends the same category error that treats conditioning as meaningful. It is
the syntax illusion: the belief that grammatical form can reveal generative process.

4.4 When Syntax Becomes Philosophy: The Expansion of the Causal Illusion

Once conditioning is understood not as a meaningful operation but as a ratio of scalars, and Bayes’
theorem as a restatement of that ratio, the status of causal inference becomes clearer. What later
appeared as a philosophical framework began as a sequence of syntactic devices—none of which
carried semantics. Directed graphs, conditional terms, and Bayesian factorizations encode permissible
algebraic rearrangements, not mechanisms, dependencies, or processes.

Causal inference marks the point where syntactic constructs were mistaken for claims about the
world. Algebraic devices with no semantic content were reinterpreted as descriptions of mechanism,
giving rise to the belief that causality can be recovered or manipulated through operations defined
entirely within a probability space.

This rests on a categorical mistake. Observational data are projections that preserve patterns while
discarding generative structure. Once a process is collapsed into data space, no algebraic manipu-
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lation—conditioning, factorization, or intervention—can reconstruct the mechanism that produced
it.

Yet modern causal inference is built precisely on the hope that it does. It inherits the initial confusion:
that conditional relations can stand in for causal ones, and that rewriting those relations yields insight
into interventions. Correlation and causation became separated only by notation, not by ontology.

The field’s history reflects successive attempts to strengthen this substitution. Pearl’s graphical models
and do-calculus Pearl [2009] treat intervention as algebraic reassignment of conditionals. Rubin’s
potential-outcome model Rubin [1974] replaces processes with contrasts between unobservable
counterfactual states. Econometric traditions—from Haavelmo to Angrist and Imbens Haavelmo
[1943], Angrist and Imbens [1995]—simulate exogenous variation through instruments and natural
experiments. Each framework adds formal apparatus, but none touches generative mechanism. All
operate solely on observational quantities, performing algebraic rearrangements that cannot, even in
principle, recover the processes that produce the data.

Even recent machine-learning approaches, which embed causal reasoning within pattern recognition,
inherit the same limitation. By treating structure in data as structure in reality, they reproduce the
fallacy at scale. The result is a closed epistemic loop in which causality is defined by syntax rather
than semantics, and computation substitutes for understanding.

5 Regrounding Scientific Inference: From Correlation to Mechanism

Scientific inference follows two fundamentally different logics. Both seek structure in data, yet they
diverge on what “structure” means.

• 1. Data–driven prediction.

Mechanism. The data-driven view treats the world as a mapping problem:

y ≈ f(x) =
∑
i

wiϕi(x).

By enlarging the feature space—adding more basis functions ϕi—any observed relation can,
in principle, be interpolated Hornik et al. [1989]. Deep learning LeCun et al. [2015] pushes
this logic to its limit: high-capacity models construct extremely expressive representations
that reproduce outcomes across diverse contexts. The model succeeds by matching the
geometry of the projected data, not the process that produced it.

Limitation. Once the basis is sufficiently large, infinitely many distinct functions fit the
same observations. Because nothing in the mapping identifies which function corresponds to
the underlying process, prediction remains decoupled from explanation. Data-driven models
can match every observed case, but they cannot recover—or prefer—the mechanism that
generates the world.

• 2. Mechanism–driven explanation.

Mechanism. The mechanistic view begins from explicit assumptions about how observa-
tions are produced. Mechanisms are first hypothesized from prior knowledge and empirical
regularities, then tested by deriving the consequences they should generate. This is the
epistemology of the physical sciences Hempel and Oppenheim [1948]: mechanisms are
proposed, used to derive predictions, and accepted only when experiment confirms that they
can generate the phenomenon.
Formally:

m ∼ Mprior, x = g(m).

Once a component of the mechanism is validated, it becomes a building block: a stable
element that can be combined with others to reconstruct increasingly complex processes.
Scientific inference proceeds by iterating this loop—observation, hypothesis, derivation,
test—allowing mechanisms to accumulate combinatorially until the generative structure of
the phenomenon becomes identifiable.
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Limitation. Mechanistic reconstruction depends on how much of the true process is
observable. When prior knowledge is weak—or when noise, entanglement, or limited access
obscures the structure—only fragments of the mechanism can be recovered. Explanation
loses resolution even if prediction remains viable. These limits reflect the information the
world makes available; they bound the resolution at which mechanism can be inferred.

6 Discussion: The Narrow Window of Statistical Success

The analysis above does not imply that statistical methods never succeed. They succeed only in the
restricted regimes where the underlying phenomena are so simple—linear, low-dimensional, and
semantically shallow—that little mechanistic information is needed for adequate performance. In
such settings, the task does not require recovering how the phenomenon unfolds. It requires only
a numerically convenient rule that performs acceptably under the observed conditions—predicting
the next value, stabilizing variation, or avoiding loss. When the world is sufficiently simple, coarse
geometric approximations can meet these limited demands without representing the generative
process.

These successes arise because the tasks can be solved without recovering the mechanism—not
because inference from projected data is valid. The error arises when such narrow successes are
generalized into a universal theory of reasoning. Methods that work only when semantics are minimal
have been applied to domains in which semantics constitute the phenomenon—human behavior,
social interaction, cognition, biological regulation, and economic dynamics. In these systems, the
projection that produces data eliminates precisely the information that inference requires.

The challenge, therefore, is not to refine estimation or strengthen asymptotics. It is to replace the
geometry-based ontology of inference with representations that preserve generative semantics. Only
then can mechanisms be reconstructed rather than approximated from their shadows.

7 Conclusion

In domains where underlying mechanisms are opaque, statistics and causal inference have long served
as instruments of certainty. Their appeal lies in translating complexity into geometry—fitting planes,
aligning residuals, and manipulating conditional expressions—creating the appearance of explanation
even when no mechanism is identified. Yet these operations construct structure within mathematics
rather than recover structure from the world; projection can reveal alignment within data but never
the process that produced them.

Physical science illustrates the opposite epistemology. Its progress has never come from fitting
geometric patterns to observations, but from inferring the mechanisms that make those observations
possible. Had physics relied on correlation, regression, or other forms of geometric alignment, it
would have produced an ever-shifting landscape of plausible patterns rather than a stable science of
causes. It is mechanism—not geometric fit—that allows explanation to move beyond the surface of
data and reach the structure of the world.

Scientific progress ultimately follows only two valid paths. One infers mechanisms from structured
priors and observation, as in physics. The other uses high-capacity models to achieve reliable
prediction in the projected space without claiming to recover mechanism. Statistical inference
offers neither, treating projected data as if it contained the structure that projection has removed.
Understanding requires mechanism or prediction—not distributions mistaken for explanation.

Declaration of LLM Usage

The authors used OpenAI’s ChatGPT to assist in refining phrasing and improving clarity. All
theoretical arguments and interpretations are original and authored by the researchers.
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